- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Cheng (1)
-
Liang, Hengyu (1)
-
Shao, Xinyang (1)
-
Wang, Chenhan (1)
-
Wang, Yiduo (1)
-
Xu, Yinlong (1)
-
Yan, Feng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
To scale out the massive metadata access, the Ceph distributed file system (CephFS) adopts adynamic subtree partitioningmethod, splitting the hierarchical namespace and distributingsubtreesacross multiple metadata servers. However, this method suffers from a severe imbalance problem that may result in poor performance due to its inaccurate imbalance prediction, ignorance of workload characteristics, and unnecessary/invalid migration activities. To eliminate these inefficiencies, we propose Lunule, a novel CephFS metadata load balancer, which employs animbalance factor modelfor accurately determiningwhento trigger re-balance and tolerate unharmful imbalanced situations. Lunule further adopts aworkload-aware migration plannerto appropriately select subtree migration candidates. Finally, we extend Lunule to Lunule+, which models metadata accesses into matrices, and employs matrix-based formulas for more accurate load prediction and re-balance decision. Compared to baselines, Lunule achieves better load balance, increases the metadata throughput by up to 315.8%, and shortens the tail job completion time by up to 64.6% for five real-world workloads and their mixture, respectively. Besides, Lunule is capable of handling the metadata cluster expansion and the workload growth, and scales linearly on a 16-node cluster. Compared to Lunule, Lunule+achieves up to 64.96% better metadata load balance, and 13.53-86.09% higher throughput.more » « lessFree, publicly-accessible full text available March 5, 2026
An official website of the United States government
